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Expansions have been given in the past for steady Stokes waves at or near a 
largest wave with a 120" corner. It is shown here that the solution is more com- 
plicated than has been assumed: that the corner is not a regular singular point, 
and that waves of less than maximum amplitude have singularities of a different 
order. 

1. Introduction 
The irrotational motion under gravity of a deep heavy inviscid fluid has been 

studied since the last century. Despite the problem's simple formulation, it has 
not been completely solved. The difficulty is the awkward nonlinearity of the 
conditions at the water's surface. 

Most work on permanent surface waves has been concerned with steady pro- 
gressing two-dimensional waves. This is surveyed in Wehausen & Laitone (1960). 
Small amplitude waves are sinusoidal. It is possible t o  construct an expansion 
in powers of amplitude, the Stokes expansion. The higher order terms become 
more important as the amplitude grows, and the wave profile changes. The crests 
become steeper, the troughs shallower. Stokes showed that the only possible 
singularity of a steady flow is a corner of 120". It is a natural conclusion to assume 
that waves of increasing amplitude change shape until a largest wave is reached 
which has a 120" corner and a wide shallow trough. There is no proof that such 
a wave exists, although Krasovskii (1962) proved that waves exist with maximum 
slopes up to, but not including, 30". A wave with a 120" corner would have slopes 
of 30" at the corner. This is fairly strong evidence that the wave with a 120" 
corner also exists, and it has generally been assumed that it does, even though 
large amplitude gravity waves show capillary-scale ripples near the crest, rather 
than a corner. 

Several people have tried to compute the shape of this wave, such as Michell 
(1893), Nekrasov (1920) and Yamada (1957). Longuet-Higgins (1973) gave a one- 
term approximation that fits closely the previously calculated profile. When the 
problem is formulated in streamline co-ordinates, a 120" corner corresponds to  
an analytic function z(f) having a singularity of order 4. Existing expansions all 
tacitly assume that this is a regular singular point. However, an attempt to  
expand about the corner quickly reveals that this is not regular, and the ex- 
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pansion of z involves irrational powers off. Consequently, these expansions do 
not adequately describe the nature of the corner, and may similarly fail to 
describe the wave profile. 

Havelock (1919) constructed an expansion for waves of arbitrary amplitude, 
which assumes that the solution has the same order $ singularity for all amplitudes, 
approaching the surface at  maximum amplitude. This is an attractive assumption, 
but incorrect, and the misrepresentation is worse than before. Instead of one 
order 8 singularity above the fluid, there are several order singularities which 
coalesce at  maximum amplitude. 

In  general, the structure near the corner is considerably more complicated 
than has been assumed in the past. These results are confirmed by the numerical 
work of Schwartz (1972), particularly the change in order of the singularity as 
it leaves the surface. 

2. The equations of motion 
The equations of steady flow of a heavy inviscid fluid are well known. In  a frame 

of reference moving with the wave profile, with units of length and time such 
that the wave speed and gravitational acceleration are unity, they are the 
Bernoulli condition +(V$)2 + y = 0 at y = 7, (2.1) 

the kinematic condition $z7z - $g = 0 at y = 7, (2.2) 

024 = 0, y 6 7, (2.3) 

$+x, Y - f - 0 0 ,  (2.4) 

where the surface is given by y = ~(x). The constant in the Bernoulli condition 
has been set zero by the choice of the origin. The condition at  great depth implies 
that the fluid is moving at unit velocity with respect to the co-ordinate frame. 
The solution with no waves is q5 = x, 7 = - 4. 

Since the wave height q(x)  is one of the unknowns, the equations are trans- 
cendentally nonlinear. This can be improved by a transformation of the fluid 
volume to a fixed, known domain. The nonlinearity becomes ‘only’ polynomial. 
While the equations are still insoluble, manipulations are easier. For numerical 
work on a computer, or by hand, the decrease in storage space and effort is 
considerable, as the expansions of only a fixed number of powers of the de- 
pendent variables are needed. Equations (2.1) and (2.2) expanded about 7 = - +, 
involve 7% at nth order. This more convenient representation is given by trans- 
forminginto streamline co-ordinates ($, $). Then z = x + iy is an analytic function 
of the complex potential f = $ + i$: 

x = x(f) inside the fluid. ( 2 . 5 )  

The kinematic condition (2.2) states that the surface is a streamline, which 
can be taken as + = 0. The fluid then occupies the lower half-space. The con- 
dition (2.4) at great depth is now 

z+f  as ++-oo. (2.6) 
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Reformulating the Bernoulli condition, we have 
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This is the same as equation (34.1) of Wehausen & Laitone (1960). The inverse 
transformation should also exist and be regular : 

If z is an analytic function off throughout the fluid and on its surface, the 
wave profile must be smooth. In  a limiting case, there may be a singularity on 
the surface, when the wave profile has a corner. The corner angle depends on the 
singularity: if the Singularity is of order p, the surface has a corner of angle n-p. 

For if z ( f )  = zo +P(f- #,,)p + o[( f - q5Jp] near f = q&, 0 < p < 2, then 

a% (2 - 20) = arrg (PI +parg (f - do, + 41) .  

As f moves along the surface from left to right, f - q50 changes from real 
negative to real positive, and its argument increases by n-. Then arg (z-z,,) 
increases by n-p, and the surface has a corner of angle np at z = zo. 

It is usual to consider only symmetric waves. The peak can be chosen to be 
at  q5 = 0. Then either both, or neither, of (x, y) and ( - x, y) lie on the surface. That 
is, z lies on the surface if and only if - x *  does. This implies that 

z ( - f )  = -z(f*). (2.9) 

3. Waves of greatest height 
Stokes' singular solution is 

2 = - i e b i  ($f)+. 

This satisfies the surface condition exactly, and is analytic inside the fluid, 
provided the cut is taken above the q5 axis. The surface is given by f = $ (6 is 
real), with 

--in- if q5 > 0, 

{ -in- if q 5 <  0. 
arg ( 2 )  = 

The surface consists of two lines radiating from the point x = 0, with slopes 
of +30" and -30". The fluid occupies this infinite 120" sector, and is not a 
bounded travelling wave. This can be seen from the fact that it does not satisfy 
the condition at  great depth, z - f. This solution can be only locally valid, the 
first term in an expansion about the corner. Higher terms in this expansion are 
needed to describe behaviour away from the corner. We look for the next term 
in the expansion 

2 = -i($if)$+ia(if)"+... (p > 3) .  (3.2) 
17-2 
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Inserting (3.2) into the Bernoulli condition (2.7) should determine ,a. Since (3.1) 
is an exact solution, the term ia(if)’ must satisfy a linear homogeneous equation 
which has ,u as an eigenvalue. The constant a cannot be found from local argument 
alone. Let a = p eniy ,  then 

z ’ ( f )  = j(if)-*-a,u(if)p-1= (jq5)-*exp [-&ri]-ppjpfi-lexp [&ri(p- 1)+niy], 

- 2 Im x = ($f)$ - 2pjpfi cos (imp + ny). 
Substituting into the surface condition and collecting terms of order q9-8 gives 

0 = GOS (&rp +my) + &L cos (&7p + 777 - in), 
tan ( n ~ +  n y )  = - (2  + 36)/3Q S, or (3.3) 

where 6 = +p > Q. If the expansion (3.2) is to be well behaved, p, and hence 6, 
should be rational. Best would be p = 8 +integer. Then if 6 is rational, 

tan (m~+$’y) 

is a negztive rational number times 33. The only such choices, for 6+y rational, 
are - 36 and - 1/34. Then 

-F 

2 + 36 = 3% 6(38 or 1/36) = 96 or 36. 

The second choice is contradictory, the first gives 6 = Q. Hence it is not possible 
for both y and S to be rational. 

A particular case is the usually assumed symmetric wave. Then (2.9) implies 
that a is real, and so p is irrational, and probably transcendental. The expansion 
(3.2) is not an expansion in integral or fractional powers off, and the corner is 
not a regular singular point of the function z(f). 

Any approximation of z(f) should have a structure similar to z .  Consider 
expansions of the form 

x ’ ( f )  = F(f) S ( f ) ,  (3.4) 

where P( f) is a known function with a regular singular point of order - Q and S 
is an unknown function which is approximated in some way. Since x is irregular, 
so is S. This factoring does not regularize the problem, and there remains some 
singular behaviour in S. This form is a natural one, and many methods use it. 
For example, Michell’s method has (Wehausen & Laitone 1960, equation 33.18) 

and Nekrasov and Yamada have 

These use dimensional co-ordinates, and dimensionless forms are found by 
setting c = 1. Neither of these expansions adequately represents the solution. 
For example, depending on the value of p, some derivative of the sum S will 
diverge. 



Crest singularity of a Stokes wave 261 

Equation (3.3)) with y = 0, has infinitely many roots. The first, greater than 3, 
isp = 1.468. If it is assumed that this is the relevant root, the first derivative of S 
will diverge. This also tells us how rapidly the surface deviates from the 30” slope: 

= e d n i  (##)+ + e W p + l )  (# > 0). 

= e - h i  r + a e h i ( p + l )  & i 
z = - i e f n i  (@)+ + ia(i$)p 

The slope deviates from the value - 30” at the corner like r*fi-l = ~ 1 . 2 0 ,  or slightly 
more slowly than a parabola. 

4. Waves of less than maximum height 
Similar problems arise with waves of less than maximum amplitude. The 

natural assumption to make is that the f Q singularity has moved off the surface 
into the upper half-plane. This, however, is not the case. For less than maximum 
amplitude z has singularities only of order 4, and the approach to maximum 
height is correspondingly more complicated. 

Consider z * ( f ) ,  the function conjugate t o  x ( f ) ,  defined by z * ( f )  = [ z ( f* ) ]* .  
Since z is analytic and z’ non-zero in the lower half-plane x* is analytic and x*’ 
non-zero in the upper half-plane. The surface condition (2.7) is 

[ A ( f )  + iz] z’B(f) = 1, (4.1) 

where A( f) = - i x*  and B( f) = z*‘. This is analytic in the two analytic functions 
z and z*, and so can be extended everywhere they are both analytic. Consider 
(4.1) in the upper half-plane. A ( f )  is analytic, and B ( f )  analytic and non-zero. 
As an equation for z(f), (4.1) admits only singularities of order 9. A different 
result is possible at maximum amplitude, for then the singularities of z and z* 
coincide. 

Now also consider the effect of increasing the amplitude. At maximum 
amplitude, x ( f )  has one singularity, of order #. For any lesser amplitude, it has 
singularities only of order 4. The only way a continuous approach to greatest 
amplitude is possible is for z to have several coalescing singularities. 

Havelock’s expansion, for waves of arbitrary amplitude, uses Michell’s ex- 
pansion (3.5)) but with the singularity placed at  f = ia, a! > 0: 

He is thus assuming that z has one order 8 singularity above the fluid, which 
moves down to touch the surface at maximum amplitude. Not only does this 
have singularities of the wrong order, but also the wrong number. 

Schwartz (1972) numerically computed the perturbation expansion to high 
order, and manipulated the series to show the structure near the singularity. 
He found that Havelock’s expansion was unsuitable because the singularity 
changed order, from # to 8, as it left the fluid, and that the structure in general 
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at and near greatest amplitude was more complicated than any of these past 
expansions had assumed. 

I am considerably indebted to Professor D. J. Benney for his help andguidance. 
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